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We study a pair of endogenously bursting neurons with fast nondelayed inhibitory connections. We show
that fast reciprocal inhibition, known to facilitate antiphase bursting, can stably synchronize bursting neurons.
This contrasts with the classical view that reciprocal inhibition has to be slow or time delayed to establish
in-phase synchronization. Through stability analysis, we reveal the emergent mechanism of in-phase synchro-
nization and discuss its implications for various types of bursting neurons and networks.
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Reciprocal inhibition is the key component for function-
ing of various regulatory and neural networks such as central
pattern generators �CPGs� �1–3�. CPGs are small polymor-
phic neural circuits governing various rhythmic activities in-
cluding cardiac beating and locomotive behaviors such as
walking, chewing, and swimming �3�. Switching between lo-
comotion behaviors can be attributed to switching between
various attractors of a CPG network. Each attractor is asso-
ciated with a definite rhythm on a specific time scale. Such a
multifunctional CPG contrasts to a dedicated CPG that is
only capable of generating a single robust rhythm �3�. A
building block of many CPGs is a half-center oscillator �1�,
composed of two cells reciprocally inhibiting each other to
produce alternating dynamics in which each cell engages in
antiphase bursting. There has been much work on the mecha-
nisms giving rise to antiphase bursting, including the synap-
tic release, the postinhibitory rebound, and the synaptic es-
cape �2,4�. The network circuitry and the synaptic and
intrinsic properties of cells cooperate synergetically to pro-
duce a plethora of cooperative rhythms �4–19�.

Reciprocal inhibition is postulated to desynchronize neu-
rons, provided that inhibition is fast �4,7,10,11�; i.e., the syn-
aptic decay is faster than or comparable to the duration of
presynaptic drive. More precisely, it was shown that stable
synchronous oscillations are not possible in reciprocally
coupled networks of fast inhibitory spiking cells �10,11�, un-
less each spiking cell has at least two slow intrinsic variables
�9�. At the same time, a slowly decaying inhibition or a time
delay does establish synchronization in the network
�2,4,7,10,11�. In particular, it was demonstrated �7� that inhi-
bition, not excitation, leads to synchronized firing, provided
that reciprocal synapses are noninstantaneous and slow. Fur-
thermore, such a network can exhibit coexistent in-phase and
antiphase synchronized firing �4,7�.

In this Rapid Communication, we report that fast nonde-
layed reciprocal inhibition can synchronize endogenously
bursting cells. We reveal the mechanisms of in-phase syn-
chronization, which are specifically due to the spike interac-
tions of the cells during the active phase of bursting. This
contrasts to the solely desynchronizing properties of relax-
ation oscillators which are often used to model bursting cells
where the spikes are omitted �2,11�. In our case the stable
in-phase synchronization coexists with antiphase bursting
within a broad range of initial conditions and parameter val-
ues of the network. We provide a quantitative analysis of the
stability conditions through the examination of the varia-

tional equation and reveal the properties of the network
model that make in-phase synchronization stable. Our find-
ing and tools are applicable to a variety of oscillatory cells
�14�, as well as to large complex networks in general.

The two-cell network of endogenously bursting cells in
the study is described within the framework of the Hodgkin-
Huxley formalism

CVi� = F�Vi,hi,mi� − gs�Vi − Es���Vj − �syn� ,

�hhi� = G�Vi,hi�, �mmi� = R�Vi,mi�, i, j = 1,2, �1�

where Vi, hi, and mi are the ith neuron nondimensionalized
membrane potential and the gating variables for the fast so-
dium and the slow potassium currents in a reduced model of
the leech heart CPG interneuron �6�. The inhibitory synapses
are instantaneous and described through the fast threshold
modulation �FTM� concept �12�, where the coupling function
is given by ��Vj −�syn�=1 / �1+exp�−1000�Vj −�syn���. The
synaptic threshold �syn is set to ensure that spikes within a
burst cross it through, such as in Fig. 1�a�. The FTM cou-
pling is a remarkably good model of realistic fast synapses
�2,11�. For instance, the rise time of the synapse in the leach
heart CPG is comparable with the duration of a spike, and
the synapse is nearly instantaneous �15�. The low level of
reversal potential Es=−0.0625 makes the synapse inhibitory.
We employ the level of �syn and the coupling strength gs as
two bifurcation parameters of network �1�. Network �1� was
shown to generate robust antiphase bursting via the hold-
and-release mechanism �19�, similar to synaptic release �2,4�
in spiking cells. Observe that network �1� of two identical
cells always possesses a symmetric solution �V :V1�t�
=V2�t� ,h :h1�t�=h2�t� ,m :m1�t�=m2�t��, corresponding to
completely synchronous bursting and governed by the self-
connected system known as autapse. This synchronous solu-
tion is unstable in the absence of coupling. In what follows,
we will show that this synchronous bursting solution is stable
and robust under quite general conditions on the inhibitory
coupling. This makes the network bistable such that an-
tiphase bursting and synchronous in-phase bursting coexist
for the same parameter values �see Fig. 1�. We also reveal the
robustness of in-phase bursting with respect to transversal
perturbations at its different phases by examining the shape
of the attraction basin along the orbit. Figure 2 demonstrates
that stable in-phase synchronization is a generic phenomenon
for the two-cell network as it emerges from a wide range of
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different voltage values of both cells. This observation is
reasserted by the computer-assisted verifications aimed to
examine the robustness of in-phase synchronization against
mismatch between the phases of the cells along the bursting
orbit. Figure 3�c� shows the variations in the synchronization
zone �shaded� as the cells enter the quiescent phase through
tonic spiking. This is consistent with the results of Fig. 2 and
confirms that in-phase synchronization is quite robust and
hence achievable during the spiking phase of bursting. On

the other hand, a little phase mismatch between the cells
during the quiescent period will likely lead to antiphase
bursting. In the rest of this Rapid Communication, we ex-
plain the synchronizing effect of fast nondelayed reciprocal
inhibition through examination of the variational equations
for transverse perturbations to the synchronous solution �16�,

C�� = FV�V,h,m�� + Fh�V,h,m�� + Fm�V,h,m�� + �S1 + S2�� ,

�h�� = GV�V,h�� − �, �m�� = RV�V,m�� − � , �2�

where �=V1−V2, �=h1−h2, and �=m1−m2 are infinitesimal
perturbations of the zero equilibrium state of Eq. �2�, which
represents in-phase synchronization. In Eq. �2�,
�V�t� ,h�t� ,m�t�� corresponds to the synchronous
bursting rhythm. The terms S1=−gs��V−�syn� and S2
=gs�V−Es��V�V−�syn� are due to the synaptic coupling.
Note that S1�0 and therefore stabilizes the zero equilibrium
state of Eq. �2�. More precisely, S1	0 after the membrane
potential V�t� goes over the synaptic threshold �syn as in the
case of excitatory coupling �16�. Meanwhile, S2
0 due to
�V−Es��0 and positiveness of the partial �V�V−�syn�
reaching the high peak at V=�syn and then rapidly decaying
away from the threshold. Consequently, S2� tends to desta-
bilize the origin every time the membrane potential V�t� gets
close to �syn. In simple terms, the inhibition has a dual role
in stabilizing and breaking in-phase synchronization as the
terms S1 and S2 compete with each other to make the syn-
chronous solution stable versus unstable. The overall out-
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FIG. 1. �Color online� �a� Coexisting stable in-phase �Qs� and
antiphase �Qa� bursting orbits in the phase space of Eq. �1� at gs

=0.7, �syn=−0.02 and VK2shift=−0.0215. Voltage cuts pi, i=1,4
reveal the V range of attraction basins �Fig. 2� of in-phase bursting
at its various phases. �b�. Voltage traces showing the robustness of
in-phase bursting against an external pulse perturbation during the
spiking period, and its vulnerability, leading to antiphase bursting,
during the quiescent period of bursting.
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FIG. 2. Basins of attraction corresponding to the stable synchro-
nous trajectory. The four basins of attraction �synchronization
zones� in the �V1 ,V2� plane are calculated by choosing different V1

and V2 along the four vertical lines p1 , p2 , p3 , p4, depicted in
Fig. 1�a�, that correspond to four fixed values of the gating variables
m1=m2 and h1=h2. Here, gs=0.4, �syn=−0.0225, and VK2shift

=−0.022. Black points indicate the initial values that converge to
the synchronous trajectory �the diagonal V1=V2�, whereas the white
regions indicate the attraction basins of antiphase bursting. Panels
1–2 show that during the spiking phase, in-phase synchronization
occurs despite a large dispersion in initial conditions in V and domi-
nates entirely �cf. line p2� over antiphase bursting. Panels 3–4: dur-
ing the quiescence, the basins shrink strongly and become fractal.
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FIG. 3. �Color online� �a� Voltage trace of four-spike synchro-
nous bursting. Its red �thin� and black �thick� segments indicate
positive and negative instantaneous values of the largest transversal
Lyapunov exponent Lmax

inst . �b� Synaptic term S=S1+S2. Note sharp
positive peaks in S, corresponding to the appearance of the desyn-
chronizing term S2, when the bursting orbit crosses the synaptic
threshold �syn. The wide negative plateaus in S are caused by the
stabilizing term S1 and coincide with the upper part of the bursting
trajectory. For the given threshold �syn=−0.02, S1 wins over S2 and
defines the overall synchronizing effect of coupling. The corre-
sponding averaged value of S is depicted by � in Fig. 4�b�. �c�
Shape of the synchronization basin �dashed� along bursting, param-
eterized from 0° through 360°; 0° corresponds to the beginning of
its quiescent period. Its boundaries correspond to evolutions of un-
stable fixed points on the orbit which separate the basin from an-
tiphase bursting. Tonic spiking period of bursting corresponds to the
widest synchronization zone �cf. Fig. 2�, while it becomes more
fragile during the quiescent period: exceed of 5°, or advance of
either cell’s state, leads to antiphase bursting.
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come depends on various quantitative factors including the
coupling strength and the level of the synaptic threshold.
Whenever the phase point, corresponding to the instanta-
neous state of one cell, gets close to the threshold �syn, the
other cell receives a strong short-term desynchronizing kick
due to S2, which causes the divergence between the phase
points. Once both rise above the threshold, the inhibition
switches into a synchronizing role. Then the phase points
receive a weaker though longer lasting synchronizing impact
due to S1, which converges the cells’ states, as illustrated in
Figs. 3�a� and 3�b�. The threshold value �syn and the synap-
tic strength gs are two crucial factors determining the stabil-
ity of the zero equilibrium state in variational Eq. �2�, and,
hence, the stability of in-phase synchronization. Note that the
choice of �syn affects the balance between the competing
terms S1 and S2 and may reverse the overall contribution of
the coupling from negative to positive and vice versa. That
is, raising the threshold closer to the upper part of the spikes
lowers the contribution of the stabilizing term S1 and leads to
antiphase bursting in the network �see Figs. 4 and 5�.

It is worth noticing that the values of �syn from the left
interval of stability �see Fig. 4�a�� range from about −0.038
to −0.036. For these values, the threshold �syn is placed be-
low the minimum value of spikes and cannot intersect the
bursting part of the trajectory and, hence, cannot account for
the presence of spikes in the presynaptic cell. As far as the
synaptic coupling between the cells is concerned, this loca-
tion of the synaptic threshold �syn implies an interaction that
is similar to that between spiking �nonbursting� cells �2�.

Here, the synaptic coupling is always switched on when the
systems is on the bursting manifold and switched off when
the system is on the quiescent branch of the solution. Stable
synchronization observed in this interval is fragile as lower-
ing the threshold closer to the quiescent part switches on the
destabilizing term S2 in a small vicinity of the quiescent part
of the synchronous trajectory where the effect of S2 becomes
significant. Therefore, the synchronous solution receives a
long lasting desynchronizing impact during the quiescent
part and destabilizes. At the same time, the right physiologi-
cally relevant interval of �syn corresponds to the spike inter-
actions during the active phase of bursting and, therefore, to
more robust synchronization. It is important to stress that the
evaluation of the averaged synaptic term from the variational
equations predicts the synchronization threshold rather pre-
cisely and serves as the necessary quantitative condition for
stable in-phase synchronization. This calculation is particu-
larly important for the bistable network where coexisting an-
tiphase bursting typically dominates over in-phase synchro-
nization such that it is easy to come to the wrong conclusion
that in-phase synchronization is always unstable, relying
only on numerical calculations from random initial condi-
tions. Indeed, if one cell is initially in the spiking phase,
whereas the other is in quiescence, fast nondelayed recipro-
cal inhibition between the cells leads only to antiphase burst-
ing. However, if the cells start firing in the spiking phase,
then the inhibition, instead of diverging them, will force the
cells’ states to come together, resulting in stable synchro-
nized bursting. Note that once antiphase bursting is achieved,
it remains highly resistant to external voltage perturbations
of either cell. On the contrary, a weak common inhibition
applied to both cells can break the antiphase regime and
make the cells burst together �19� so that the reciprocal in-
hibition between the cells could synchronize them.

The synchronizing effect of fast nondelayed reciprocal in-
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FIG. 4. �Color online� �a� Largest transversal Lyapunov expo-
nent, Lmax, of synchronous bursting plotted against the synaptic
threshold �syn at gs=0.3. Note two stability intervals where Lmax

	0. �b� Dependence of averaged �S�= �S1+S2� on �syn. Observe
the graph of �S� closely following that of Lmax within the physi-
ologically relevant interval �−0.025;0.015� for �syn. It accurately
predicts the critical threshold �syn=−0.009 beyond which in-phase
synchronization breaks down. Insets �c,d� and �e,f� are similar to
Figs. 3�a� and 3�b� and relate to the thresholds �syn marked by the
circle and the square in �b�, corresponding to stable and unstable
in-phase synchronization, respectively. When the spikes hit �syn

transversally ��c� and �d� and Figs. 3�a� and 3�b��, the impact of S2

is weaker, so that �S� remains negative long enough to ensure stable
in-phase synchronization. When �syn touches spikes from below �e�
and �f�, the desynchronizing term �S2� lasts longer, thus making �S�
positive and breaking in-phase synchronization down.
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FIG. 5. �Color online� Stability islands for in-phase synchroni-
zation in the ��syn , gs�-parameter diagram. Level curves of the
Lyapunov exponent Lmax show two large islands of stable syn-
chrony, where Lmax	0. Darker shading �top color bar� corresponds
to smaller values of Lmax. Given a fixed threshold �syn, increasing
the synaptic coupling strength gs makes synchronization more ro-
bust first, but excessively strong inhibition begins desynchronizing
the neurons. Note that the vertical axis scale does not extend down
to gs=0. The Lyapunov exponent Lmax can still be negative below
the level gs=0.05; however, its values are close to 0 and sensitive to
the choice of the integration method.

FAST RECIPROCAL INHIBITION CAN SYNCHRONIZE… PHYSICAL REVIEW E 81, 045201�R� �2010�

RAPID COMMUNICATIONS

045201-3



hibition is defined by the intrinsic property of the fast syn-
aptic coupling to act differently on the synchronization tra-
jectory, depending on whether the trajectory crosses or is
above the synaptic threshold. This property is linked to the
presence of the two competing terms S1 and S2 in the varia-
tional equations. In this context, it is generic and applicable
to other Hodgkin-Huxley-type neurons, exhibiting different
types of bursting. In support of this claim, we have examined
the synchronization properties of network �1�, composed of
two coupled �i� Sherman pancreatic �-cell models �13�, dis-
playing square-wave bursting; �ii� Purkinje bursting cell
models �20�; and �iii� FitzHugh-Rinzel elliptic bursters �14�.
In all the three networks, we have observed stable and robust
in-phase synchronization, which coexists with antiphase
bursting. We have also verified the persistence of robust in-
phase synchronization in network �1�, after the synaptic FTM
function was replaced by the Heaviside function �11� and by
a precise dynamical model of fast synapses, wiring the heart
beat central patter generator of the leech �15�. In the latter
case, the synapses are noninstantaneous yet fast so that the
impact of inhibition on synchronization is identical to those
of the instantaneous FTM coupling. We have also tested the
robustness of in-phase synchronization with respect to mis-
matches in the synaptic strengths and the intrinsic parameters
of the cells. Perfect synchronization is no longer possible in
these cases, due to symmetry breaking, resulting in that the
spikes within the synchronized burst do not coincide any-
more. In all simulated cases this approximative �burst� syn-
chronization has been verified to be robust for a mismatch in
the synaptic strengths up to 5–10 %.

In summary, we present the general ability of fast nonde-
layed reciprocal inhibition to synchronize bursting cells. This

synchronizing property is independent from the type of the
individual bursting cell and the model of the fast nondelayed
inhibition, be it the instantaneous FTM coupling or a dy-
namical synapse with the synaptic constants comparable with
the duration of the presynaptic spike. The exact synergetic
features that make stable in-phase synchronization possible
are �i� the ability of fast inhibition to switch its impact from
desynchronizing to synchronizing when the spikes cross the
synaptic threshold and �ii� the presence of spikes in bursts. It
is customary in biophysics to use relaxation oscillators as
simplified models of bursting cells where the spikes are
smoothed over and ignored. However, reciprocally coupled
relaxation oscillators with fast nondelayed inhibition are im-
possible to synchronize �2,11�. In light of this, our result, that
the addition of spikes to the individual cell model can re-
verse the role of fast inhibition from desynchronization to
synchronization, is imperative for biophysical modeling of
neuronal networks. It stresses the importance of full-scale
detailed models of bursting cells versus simplified models
such as relaxation oscillators. The two-cell network that we
have studied is the fundamental building element of large
realistic inhibitory networks. Our preliminary results show
that such complex networks with fast inhibitory connections
also possess the hidden property to produce the in-phase syn-
chronized rhythm, provided that the individual cells are
bursters, not spikers. A consequence is the enhanced multi-
stability of complex neuronal networks, resulting in richer
dynamical information capacity and spatiotemporal neuronal
integration.
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